Red Supergiants, Post-Red Supergiants, and Red Transients -- the Evidence for High Mass Loss Episodes

Betelgeuse Workshop - the Astrophysics of Red Supergiants, Paris, November 2012

The Upper HR Diagram

The evidence for episodic high mass loss events η Car 12 (wind) 11 120 AG Car ATCA image of AG Carinae μ Сер Log L 20 60 -S Dor IRC +10420 VX SgrVY CMa Cyg Var A 0 5.5 arcsec • NML Cyg HR Car ---40 R71 -20 NML Cyg F555W ₩-SN 1987A 25 -0 arcsec 2008 NGC 300 OT -7 AGB LIMIT SN 2008s -6 SN 2010da 4.0 -5 -4 3.5 4.5 4.0 3.5 Log T

VY CMa -- the extreme red supergiant, powerful OH/IR source

Distance ~ 1.3 kpc Luminosity ~ 4 x 10⁵ L _{sun} Initial Mass ~ 30 -- 40 M _{sun} Mass Loss rate 2 -- 4 x 10⁻⁴ M _{sun} / year Size ~ 8 -- 10 A.U., or ~ 1500 -- 2000 R_{sun} It is visible as a small red nebula

~ 10 arcsec across

HST/WFPC2 images revealed complex environment – numerous knots, filamentary arcs, prominent nebulous arc

Due to multiple, asymmetric ejection episodes possibly from large-scale convective regions on the star.

Smith, Humphreys, Davidson, Gehrz, & Schuster, 2001

10"

 $1'' = 1500 \,\mathrm{AU}$

High Resolution, Long-Slit Spectroscopy --Keck HIRES Spectrograph

Expanding relative to star ~ 50 km/s ~ 500 year ago

2D spectra of strong K I emission lines across the arcs

NW Arc

Arcs 1 and 2

2nd Epoch images with HST/WFPC2 in 2005

Measured the transverse motions V_T - shift in x and y positions between the two images. 66 positions

Radial Velocities at same positions K I em line (due to resonant scattering)

Humphreys, Helton & Jones, 2007, Jones, Humphreys, & Helton 2007

Asymmetric Mass Loss Events and the Origin of the Discrete Ejecta

Images + Doppler and Transverse Velocities of VY CMa

Arcs and Knots are spatially and kinematically distinct; ejected in different directions at different times; not aligned with any axis of symmetry.

They represent localized, relatively massive (few $x \ 10^{-3} M_{sun}$) ejections

Large-scale convective activity → Magnetic Fields

VY CMa -- circular polarization of H_2O (Vlemmings et al 2002, 2004), circular polarization of SiO (Barvainis et al 1987, Kemball & Diamond (1997), Zeeman splitting of OH (Szymczak & Cohen 1997, Masheder et al 1999) -> 10^4 G at the star

Recent Results from LMIRCam (2 - 5mm) on the LBT with AO

The SW clump – in the visible resolved into individual knots but very red and dusty. In the near-IR an unresolved knot . Ejected about 500 yrs ago.

Model as optically thick diffuse reflection at K plus ½ flux from thermal emission at M . Mass loss 7 x 10⁻⁴ Msun

Shenoy et al. 2012

The Yellow or Intermediate-type Post Red Supergiant IRC +10420

1" = 5300 AU

Jones et al 1993 Oudmaijer et al 1994, 1996 Humphreys, Smith, Davidson, Jones, et al.1997 Humphreys, Davidson & Smith, 2002 Strong IR excess $L \sim 5 \ge 10^5 L_{sun}$ High mass loss rate 3-6 $\ge 10^{-4}$ Warmest maser source Spectroscopic variation late F \rightarrow mid A

Complex CS Environment One or more distant reflection shells ejected ~3000 yrs ago

Within 2 " – jet-like structures, rays, small nearly spherical shells or arcs Evidence for high mass loss ejections in the past few hundred years

3D Morpholgy of IRC +10420 – 2nd epoch images from HST spectra from HST/STIS

Numerous, arcs, knots ejected at different times (100-400 yrs), directions, and all within a few degrees of plane – viewing nearly pole-on

Semi-circular arcs – expanding bubbles? or loops?

Tiffany, Humphreys, Jones & Davidson 2010

Maser distribution

IRC +10420 -- circular polarization of OH (Nedoluha & Bowers 1992)

 \rightarrow 3 x 10³ G at the star

Arcs and loops associated with surface activity

Recent LBT/LMIRcam image

Conclusion – The mass loss histories of VY CMa and IRC+10420 are dominated by episodic high mass loss events. These discrete events are probably associated large scale surface activity, i. e. convective cells and magnetic fields.

VX Sgr – dipole magnetic field Vlemmings et al.

NML Cyg – Interacting with Its Environment

Optically obscured star embedded in a small asymmetric bean-shaped nebula, strong OH/IR source mass loss rate 6×10^{-5} L ~ 5×10^5 L_{sun}

Similar in shape to HII contours (30" away) due to interaction of RSG wind with ionizing photons hot stars in Cyg OB2

0".25 = 500 AU

Schuster, Humphreys & Marengo (2006), Schuster et al. (2009) showed this is the molecular photodissociation boundary

Recent results on μ Cep – 9 -12 μ m imaging MMT/MIRAC

De Wit et al. 2008 25 μ m image

Observations in progress ----

LBT LMIRcam($2-5\mu m$), LBTI/AO ($8-12\mu m$) – VY CMa, IRC+10420

MMT MIRAC(8 – 12µm), MMTPol -- S Per, VX Sgr, IRC+10420 plus several RSGs

Collaborators

Kris Davidson Andrew Helton George Herbig Terry J. Jones Gerald Ruch Dinesh Shenoy Nathan Smith George Wallerstein

Michael Schuster Massimo Marengo

Kris Davidson Terry J. Jones Chelsea Tiffany

NGC 300 OT

Luigi Bedin Howard Bond Alceste Bonanos Kris Davidson Berto Monard Jose Prieto Fred Walters

Dinesh Shenoy Massimo Marengo Michael Schuster