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Betelgeuse in the radio

● Future:
– ALMA: Star, more CO transitions, other molecules, dust

– Combine with single dish for lower-excitation transitions
● Molecular bands, dust also mapped in IR 

– Decin, Ohnaka, Smith, Wittkowski, Perrin and many others

VLA, e-MERLIN,  CARMA, IRAM, Bell Labs 7-m, NRT, VLA
 > 1.4 GHz       230, 115 GHz                        1.42 GHz
Lim, Richards, Harper, O'Gorman, Kaminski, Le Bertre, Matthews ....

CO CO
HI

Radio 
photosphere 



How do RSG lose mass?
● General model for late M-types (e.g. S Per, VX Sgr, AGB✸s)

– Pulsations levitate photosphere Bowen'88
● Copious dust forms at ~5R✸ 

– Dust-driven winds
● AGB stars Ṁ 10-7 - -6  M⨀ yr-1; RSG ~10-5 M⨀ yr-1

● Betelgeuse M21ab

– Alumina nucleates inside 2R✸ (Perrin+07)

● but very small, transparent, grains  (e.g. Woitke06)

– Silicate dust ri 0.5 – 1 arcsec, >30 R✸ (Danchi+94, 
Skinner+97)

● How does the wind get that far?
● What do high-resolution studies of more evolved RSG/AGB 

stars winds tell us about its mass loss process?



Pulsation size doesn't matter?

S Per

U Ori

RT Vir

 Ori

Thanks to AAVSO
All plots: 

3 mag

● Mira: U Ori

– mag 5–6 

– Ṁ 2.3 10-7  M
⨀
yr-1 

● Late-M RSG:

 S Per
– mag <4 

– Ṁ 3.8 10-5  M
⨀
yr-1

● AGB SRb: RT Vir
– mag <2 

– Ṁ 1.3 10-7  M
⨀
yr-1

● Betelgeuse Betelgeuse 
– mag <2 

–  Ṁ 3 10-6 M⨀ yr-1 



● RSG VX SgrRSG VX Sgr Stellar disc Stellar disc at 2  at 2 m m Chiavassa+ 2010Chiavassa+ 2010

– RR  4 mas ~ 7 AU  4 mas ~ 7 AU 

– SiO SiO Chen+06 Chen+06 43 GHz 2—4 43 GHz 2—4 RR

– HH22OO  Murakawa03 Murakawa03 22 GHz22 GHz

● 5 – 50 5 – 50 RR

● Red Supergiants >~8 MRed Supergiants >~8 M
☉☉

● Lower-mass AGB stars have Lower-mass AGB stars have RR  ~1 AU ~1 AU

– Periods ~1 – few yr (RSG longer)Periods ~1 – few yr (RSG longer)

– TT
effeff

 ~2300–3300 K (RSG hotter) ~2300–3300 K (RSG hotter)

– Mass loss 10Mass loss 10-7-7 – 10 – 10-5-5 M M
☉☉
/yr/yr

Masers round cool late-type stars



Masers resolve winds on AU scales
● OH 1612 MHz    OH 1612 MHz    

● TE tens K, long 
column depth)  

● >50 >50 RR

● HH22O 22GHzO 22GHz 
● TE ~650 K)
● 5-30 5-30 RR

● SiO>42 GHz SiO>42 GHz 
● TE >2000 K
● < 4 < 4 RR

● OH mainlines OH mainlines 
(1665-7 MHz) (1665-7 MHz) 

● Can overlap H2O 
and/or extend as 
far as 1612 MHz 
masers

VX Sgr



Velocity profiles: expansion
OH 1612 MHz
Szymczak+ (1997)
OH 1665/67 MHz
Bartkiewicz+

SiO 43 GHz
Chen+ (2007)
HH22O 22 GHzO 22 GHz

Murakawa+ (2003)



Radial acceleration
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What accelerates the wind?
● Water maser shell limits show Vexp ∝ r out to 100s R✶

– Relationship holds for M✶ ~1 to >10 M☉

● Wind exceeds escape velocity Vesc during passage through H2O shell

● First noticed for VX Sgr 
SiO, H2O, OH

– Chapman & Cohen 1986

– Collision rate too low for 
aggregation at r ≫ ri 

– Dust absorption efficiency 
evolves? 

● Verhoelst+09

– Changing momentum 
coupling or ?

● Ivezic&Elitzur'10

H2O maser shell limits
Richards+'12;Bains+'03

Vesc 1 M☉          10 M☉



Herschel gradual acceleration

● IK Tau HIFI survey 480-1150 & 1410-1910 GHz

– v(r)~vi + (v∞–vi)(1-R✶/r)

● Decin+'10
● Line width 

relates to 
excitational 
state

● Higher T 
lines at 
lower Vexp



– MERLIN radio 
interferometry 
images

● 22 GHz ( 1.3 cm)
● 10 milliarcsec 

beam
– Compact front and 

back caps
– Bright extended 

emission in plane of 
sky with star

– Spherical, radially 
accelerating outflow S Per

Water maser 
channel maps



S Per

Cloud measurements

● Measure channel 
emission by fitting  
2-D Gaussian 
components 
– Individual 

component 
beamed size

● 1-2 km s-1 

groups
● Series provide 'true' 

size of discrete 
clouds
– RSG 10-20 AU
– AGB 1-few AU



S Per

Cloud survival, maser variability 

– Specific RSG 
masers can be 
tracked for ≥5 yr

– AGB masers 
survive ⪕2 yr

● Similar to 
sound-crossing 
time

– Much less than 
shell crossing time

● Decade(s) (AGB)
● Up to a century 

(RSG) 



RSG VX Sgr 
1700 pc

AGB IK Tau 
266 pc

Shell-crossing times

23
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Masers blink, clouds survive

– Pushchino ~bimonthly 
spectral monitoring 

– MERLIN imaging every few 
years (colour)

● Matched features: black 
outlines

– Spectral variability between 
images

● Peaks vanish, some reappear
– Clouds unlikely to reform if 

dispersed
● Clouds survive as clumps
● Masers turn on and off

– Turbulence/beaming?
– Shocks/excitation?

IK Tau

2000

VX Sgr 

2001

1994

1999



Expansion proper motions

● Proper motion 
velocities 
consistent with 
Doppler 
velocities
– Similar radial 

acceleration 

VX Sgr



Expansion proper motions

RT Vir

Expansion                 Rotation

● Proper motion 
velocities 
consistent with 
Doppler 
velocities
– Similar radial 

acceleration
● ~No rotation

– Upper limits:
– VX Sgr 0.8∓0.8
– S Per  0∓1
– RT Vir 0.1∓0.1 

km/s
● Tight SiO limits 

from VERA



Cloud density
● H2O masers start at ri

● 40–70 AU RSG, 5–15 AU AGB 
– Where collision rate < masing 

rate (Cooke & Elitzur 85)

● Quenching density ~5x1015m-3

– Clouds ≳45x average (e.g. CO) 
wind density

● Upper limit: surrounding gas 
density > 0

– Filling factor ≲1%
– >90% mass loss in clouds

– 2–6 clouds/stellar period

RT Vir

S Per

U Her



Cloud size depends on star size



Rcloud set by star properties?
● Measure stellar radius R

✷  from opt/IR interferometry
– Skinner+88, Mennesson+02,  Monnier+04, Ragland+06

● Cloud radius is a function of stellar radius

– In H2O maser shell Rc ~ (0.7±0.3) R
✷

1.0±0.1

– Mass per cloud consistent with CO clump models
● Bergman+93, Olofsson+96

● Suggests that cloud properties are 
determined when mass is ejected from star
– Not e.g. due to cooling scales during dust formation

● Such microphysics should not care about M
✷

– Birth radius (5–10)% R
✷
 if outflow expands as r-2

– VLTI etc. observations suggest stellar surface 
inhomogeneities on ~10% scale e.g. Wittkowski+11 



Asymmetry or poor filling?
● U Ori shell 

shape changes 
over 7 years
– Masers dis/ 

appear in 
different 
regions 

– Survive ≲1 yr
● Peaks at 

different 
position angles
– But similar 

and angular separations from centre of expansion
velocities 

● Asymmetries within ≥100 R
✷
 transient compared 

with shell crossing time



OH mainlines interleave H
2
O

 

 

10 mas

S Per
● MERLIN H

2
O (blue)

● EVN/global mainline 
OH (contours)

● OH mainlines inter-
leave H

2
O

– Excited-state OH 
not detected

● TOH ≲500 K
● TH2O ≲1000 K
● nOH  ≲1014 m-3

● nH2O  ≲5 1015 m-3

● OH from lower-den-
sity inter-clump gas
Richards, Masheder, van 
Langevelde, Yates 2013?



S Per H2O masers almost spherical

● Slight E-W 
elongation
– Declining 

1980's > 
2000's

● SiO (Ostrowski-
Fukuda) very 
variable

● R
✷
 ~12 AU 

(Thompson+03)
– Direction of 

elongation 
might be 
variable



Incipient asymmetry

● OH mainlines 
elongated NNE-SSW

● Possibly trace surface 
of bicone

● Polarization consistent 
with magnetic field 
along axis

● Tilted so some masers 
sample field at ~55o 
to line of sight

– No red-shifted 
linear polarization

● Circular pol. (Zeeman) 
shows |B| 0.1–1.1 mG 

Bline of sight +ive

Bline of sight -ive



● OH 1612 MHz > 
2000 AU
– ~5x H2O shell 
– OH axisymmetric 

for several 
centuries

● Possible magnetic 
axis aligment?
– NB No 

discernable 
rotation

Persistent axisymmetry



VX Sgr magnetic field

● OH 1612-MHz 
~spherical
– Strong Zeeman 

splitting
● Stellar-centred 

dipole
● Axis PA 20o, S 

approaching
● B~1 mG at ~1”.4 

(~190 R✸)

● (OH mainline 
polarization a mess -  
as in VY CMa...)

VX Sgr 1612 MHz polarization vectors
Szymczak+97,01



● H2O maser shell also ~ 
spherical, 11-42 R✸

– Lower-density bicone 
▲ ●  aligned with B 
axis

Murakawa+03

VX Sgr asymmetry



Vlemmings et al 05

● H2O B axis also aligned

– ~0.1 to few G
● Magnetic energy density 

≥ kinetic energy density
– Likely to shape wind

H2O magnetic field



SiO clumps follow field lines?

TX Cam

– Are masers 
tracing matter 
accelerated 
along field lines?

● Or dragging 
the field in 
masing 
clumps? 
(Hartquist+96)

● TX Cam proper motions not 
consistently radial (Kemball+11) 
– Non-ballistic?

– Polarization vectors B follow 
direction of motion 



Or ballistic proper motions?
● Ballistic trajectories fitted to IK Tau (Matsumoto+08) 

– Including deceleration due to star's gravity
● R Cas shows some central redshifted emission (Assaf+10)

– Must be near-side infall
● R✶  ~13 mas (Weigelt '00) IK Tau

R Cas Assaf+12 



OH 1612-MHz Phase Lag 
● OH 1612-MHz masers pumped by warm dust

– Most strongly heated close to stellar maximum (P several yr)
● Light travel time from near (blue) side of shell weeks less than 

from far (red) side
– “Phase lag” 

● OH 26.5+0.6 

– 35-day phase lag

● Engels'12 



Episodic dust formation in WX Psc 
● OH 1612-MHz masers pumped by warm dust

– More effectively heated close to stellar maximum
● Light travel time from near (blue) side of shell days less than from far (red) side

– “Phase lag” 
● WX Psc shows unexpected cusps in blue:red peak flux ratio 
● Light passes through discrete, thick dust layer

– Surge in 53 m pump photons 

– We see effect on near (blue) side first
● Dust layer produces additional delayed effects on both sides

Lewis'11 
Nancay & 
Aricebo



e -MERLIN  capabilities
 Resolution matches HST/JWST/ALMA
 1.3-1.7, 4-8, 21-26 GHz wavebands (≤2-GHz bw)
 200 - 10 mas angular resolution

− Sub-mas ICRF astrometry, in-beam calibration
 6 Jy 3- sensitivity in 12 hr at 4-8 GHz  

− 40-mas resolution, up to 8-arcmin field of view
 Other bands ~15 Jy continuum sensitivity
 Spectral line: 7-20 mJy in 0.1 km/s
 Full polarization
 Dec ≳ -30o ~ 20o

 Cycle 1 later this year
Joint observations with EVN/Global VLBI
 http://www.e-merlin.ac.uk



 Resolution matches HST/JWST/ALMA
 1.3-1.7, 4-8, 21-26 GHz wavebands (≤2-GHz bw)
 200 - 10 mas angular resolution

− Sub-mas ICRF astrometry, in-beam calibration
 6 Jy 3- sensitivity in 12 hr at 4-8 GHz  

− 40-mas resolution, up to 8-arcmin field of view
 Other bands ~15 Jy continuum sensitivity
 Spectral line: 7-20 mJy in 0.1 km/s
 Full polarization
 Dec ≳ -30o ~ 20o

 Cycle 1 later this year
Joint observations with EVN/Global VLBI: mas resolution
 http://www.evlbi.org

e -ME  R  LI + VLBI capabilities



Long-term single dish monitoring
● Vital to support facilities and projects which can 

sustain decades of monitoring, e.g.
– 43-86 GHz SiO – KVN antennas, IRAM 30-m... 43-86 GHz SiO – KVN antennas, IRAM 30-m... 

● (sub-)mm transitions of SiO and water?(sub-)mm transitions of SiO and water?
– 22 GHz water Pushchino, Medicina22 GHz water Pushchino, Medicina
– 1.6 GHz OH Nancay, Arecibo1.6 GHz OH Nancay, Arecibo
– HartRAOHartRAO



Summary of wind properties from H
2
O masers

Star R
⚙

R
cloud 

(average)

Ṁ
total

n
cloud

 / 

n
average

M
cloud 

(single)

Ṁ
clouds   

/
 

Ṁ
total

Filling 
factor 

AU AU 10-6 M
⚙
/yr 10-6 M

⚙

VX Sgr 7.4 6.5 72 107 17 0.2 0.09%

S Per 8 7.5 38 43 14 1.3 0.95%

U Ori 1.5 1.9 0.23 72 0.24 1.8 0.95%

U Her 1.3 1.7 0.37 88 0.29 1.8 0.79%

IK Tau 2.8 1.4 2.6 75 0.16 0.2 0.10%

RT Vir 0.8 0.5 0.13 55 0.004 0.4 0.26%

W Hya 2.1 0.7 0.23 55 0.015 0.2 0.19%

● Properties of clouds derived from 22-GHz maser measurements
– 7 stars, MERLIN & Pushchino monitoring Richards+2011,12 

● Uncertainties, references therein for R
✷

 & Ṁ



What lies in store for Betelgeuse?

● Later RSG mass loss concentrated in ~50x overdense clumps

– Size consistent with ~0.05-0.1 R
✷   convection cells

– 3-6 clumps ejected per few-year stellar period
● Episodic mass loss could form concentric, clumpy shells

– Clump distribution ~spherical, negligible rotation
● Inter-clump lower-density gas can have biconical concentration

– Large scale (within astropause) always ~axisymmetric except VY CMa!
● Stellar-centred B fields

– ≳10s G at photosphere, ∝ r-2 - -3, ≲G at ~5 – 10R
✷ 

, 1-0.1mG at ~20-100R
✷

– May depend on local density, strong enough to influence (not drive) wind

● Acceleration continues to many 100s R
✷

● SiO masers appear first
– Keep watching at 43, 86, 211-6, 256-9, 300-3, 344-6 ... GHz 

– Maybe excited H2O e.g. 658 GHz...



Variability at  6cm (4.8 GHz) 
● Radio variability 

20-30% in 
weeks/months 
– Bookbinder+87, 

Drake+92

● Fading since 80s
– 2012 e-MERLIN  

extrapolated from 
5.75 GHz assuming 
1.32 spectral index

● Shrinking 11.15 m 
diameter 
Townes+'09

– ~56⇒48 mas in 
1993⇒2009Altenhoff+79, Newell+82, Skinner+97, Lim+98, 

Harper+03, Richards+12



Radio photosphere

● Barely resolved by VLA alone
– Lim+98, Harper+06

– 43-GHz ( 7 mm) irregularities
● 50-mas beam, sensitivity-limited

– Measure ellipticity at lower 
● 5-GHz ( 6 cm) 400-mas beam 

(colour scale)
● Combine with old MERLIN 1996

– 200-mas resolution 200-mas resolution contours
● Still sensitivity limited

5 GHz

43 GHz43 GHz



'Old' MERLIN: 5 GHz hot spots

MERLIN 1995MERLIN 1995MERLIN 1995MERLIN 1995MERLIN 1995MERLIN 1995
16 MHz b/w16 MHz b/w


rmsrms
 0.15 mJy/bm 0.15 mJy/bm

1996 22 hr 1996 22 hr 


rmsrms
 0.12 mJy/bm  0.12 mJy/bm 

Davis, Skinner,

Morris,  Richards

 

● 4 – 5 spots > 4rms 
– 0.48 – 0.78 mJy/bm

● (55x85) mas beam

● Shortest spacing 
≡ >0”.5 

– Sensitivity 
limited

● Brightness temp 
Tb 6000-8000 K

● Tb 2000 K

– >3600 K 
photosphere to 
have been 
detected at all 



 Ori e-MERLIN 5.75 GHz
● Richards, Davis, Decin, Lim, 

Etoka, Garrington, McDonald, 
Wittkowski

● 6-8 hr, 400 MHz b/w
– Colour: 180-mas beam

● 
rms
 0.027 mJy/bm

● Fit elliptical Gaussian 
1.619 mJy

– 235x218 mas2

● Small central 0.082 
mJy residual

– Main disc T
B 

1250∓135K

  July 2012July 2012



SW Arc
● SW residual after subtracting 

Gaussian
– 0.175-0.275 asec radius arc

● Total flux density 0.088 mJy 
in 0.0249 asec2

● Arc T
B 
150∓40K

  Central peak subtractedCentral peak subtracted



SW Arc
● Similar direction extension at 

~0.6 asec in 1996 VLA data
– Barely 3   Central peak subtractedCentral peak subtracted

e-MERLIN 2012e-MERLIN 2012

VLA 1996VLA 1996



● Detatched CO source 5” SW 

– O'Gorman+12

SW emission on other scales

2.17 m

CO

● SW extension 
similar 
direction to IR 
plume
– Kervella+09, 

Kervella+11



● Elongation of HI close to V✸ 
(Le Bertre+12)

● NE bow-shock IRAS, Galex  
(Noriega-Crespo'97), 
Herschel (Decin'12)
– Arcmin scales

SW arc on arcmin scales

HI 3.7 km
/s

Bow Shock

HI 21 cmHI 21 cm



Preferred direction? Chance?

● IR and radio arcs within ~1” ejected at many PA
– SW preferred at several epochs at least since 1996

– 225-mas 'beard' – 20-40 yr from R
✷
 @ 5-10 km/s

– CO at 5” equivalent to >500 yr  @ 9 km/s 
● Material within astropause shares star's bulk motion

– Bow shock cannot cause (sub-)arcsec SW ejecta(?)
● Direction similar to magnetic axis Dupree 

– But why not equivalent NE arcs/plumes
● Combination of episodic ejection/preferred direction?

● ~Thousands-yr HI, CO shells spherical
– Preference transient?



5.75 GHz high resolution
● Contours: weighting to 

(80x60) mas beam
– Reduced sensitivity to 

low surface brightness 
emission

● 
rms

 0.09 mJy/bm

● Peaks 0.706, 0.489 
mJy/beam

● T
B  
5400∓600K, 

3800∓500K
● Separation     

90∓10 mas,          
PA 110o∓10o

  July 2012July 2012



Relationship with optical hot spots

90 mas

● Hotspots not aligned 
with 'pole' 
Uitenbroek+98

● Nor H-band peaks  
Haubois+09

● Tb>4000K: 

– Chromosphere 
patches? Harper+06

– Elevated hotspots?

– View into hotter, inner 
surface?

● through region with 
steeper optical depth 
gradient 

20 mas



Optical hotspots

● Locations of optical hot-spots varies
– 2-3 hotspots, 3-9 months survival Tuthill+97

– Freytag+02 compiled 9 yrs data 
● Visible/NIR WHT and COAST

– NB entire optical disc similar in 
size to 5-GHz radio beam

● Radio might see same hotspots if 
they subtend a similar solid angle 
at 5-6 R

✷

– If not, a single blob would be 
seen if upper layers transparent

– Or, do radio hotspots have a 
different origin? 



Possible origins of radio hotspots
1 Chromospheric patches

– H to 4.5 R
✷ 

Hebden+87
● Heating needed Harper06

2 Cooler higher layers 
expose photosphere

● Unrealistically cool?
● Only in central ~50 mas 

3 Convection
● How is gas kept hot?

4 Pulsation
– Ireland+11 models to 5R

✷

● What velocity needed?

Only 1 and 4 might explain 
Tb  ≳ 3600 K



Different 's trace different layers

AGB Freytag & Hoefner 08  

ALMA EVLA e-MERLIN● r22 GHz ~ 2rphotosphere

● r() ~55 x -0.5   (AU)
● r (1)↑ as ↓

– Radiosphere V 10 km/s?
● rr4343  →  rr22 22 ~2 AU, ~1 yr
● rr2525  →  rr2222  ~4.5 months 

● Monitor at decreasing 
– See same layer as it 

expands?
● Correlated changes: 

pulsation?
● Variegated changes: 

convection?
● Persistent axis: 

magnetic field?

● 20~50 mas resolution  



What is (sub-)mm radius of Betelgeuse?
● 4-40 GHz radio radius roughly follows -2

– but must flatten off at higher frequencies
– Beware 

variability

– e-MERLIN

– VLA

– ALMA 



Is mass loss initiated in the radio 
photosphere?

● Need models of radio photosphere from 800 - 1 GHz

–  0.3 mm to 30 cm;  1~10 R✸ 

– What is depth of surfaces ALMA will see?
● How far out can convection work?
● How far can chromospheric patches survive?
● Heating by pulsation shocks

– Chemistry of mass loss
● Is the stellar surface chemically inhomogenous?

– Clumps could be intrinsically, chemically distinct
● ALMA will resolve deep stellar layers, thermal lines, dust

● e-MERLIN/VLA will resolve 2 - ~10  R✸

– Maybe detect the first SiO masers!
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